Amputations of the digit, ray and midfoot

Dane K. Wukich M.D.
Chief, Division of Foot and Ankle Surgery
Medical Director, UPMC Foot and Ankle Center
University of Pittsburgh School of Medicine
• I have no conflicts of interest to disclose relevant to this talk
Treating patients who need an amputation

• “A pessimist sees the difficulty in every opportunity; an optimist sees the opportunity in every difficulty.”

• You must approach amputations with a positive attitude, although there are many reasons to think negatively.
Diabetic related amputations

• “One of the most feared complications of diabetes”: Armstrong Int Wound J 2007

• “A catastrophic complication in individuals with diabetes”: Tseng Gen Hosp Pysch 2007

• More than 60% of non-traumatic amputations occur in patients with diabetes mellitus
Partial foot amputations (PFA)

- Toe disarticulations
- Ray resections
- Transmetatarsal amputations
- Tarsometatarsal amputations
- Midtarsal amputations
• Diabetes
• Soft tissue Infection
• Osteomyelitis
• Ischemia
• All of the above
Goals of PFA

- Plantigrade foot
- Stable wound healing
- Prevent future ulceration
- Provide the ability to use relatively normal shoes with minimal modification
Advantages of PFA

• Preservation of end weight bearing
• May improve proprioception
• Less alteration of body image
• Less energy expenditure ??
• May be able to walk without a prosthesis
Biomechanics of PFA

- Patients walk at 2/3 of normal speed
- Increased ground reaction forces
- Increased plantar pressure
- Residual limb absorbs more of the ground reactive force

Surface area
Ankle Power Generation

- Amputations at or distal to the MTPJ have little effect on ankle power
- Preservation of the metatarsal heads allows the amputee to capitalize on the ankle’s contribution to gait

Ankle Power Generation

- Amputations proximal to the metatarsal heads compromise ankle power
- Hip becomes the main provider of power
- Primary goals of these amputations should be to obtain soft tissue coverage
- May want to consider an above ankle orthotic for these patients.
Ideal prosthetic/orthotic

• Offloading of sensitive areas
• Redistribute pressures
• Provide coupling between foot and device
• Provide sufficient rigidity to allow center of pressure to move beyond residual limb
Increased Energy Expenditure

Waters et al. JBJS 1976
Oxygen consumption (ml/kg/hr)

- Partial foot amputation
 - Chopart
 - Pirogoff
 - Lisfranc
- Surprised to see that BKA had lower energy expenditure than PFA
- Studied traumatic amputees

Prosthetics and orthotics int. 2010
Key Points

• Determine correct level of amputation
• Tissue oxygen perfusion must be adequate for healing
 – Toe pressure of 40mm Hg or greater
• Nutritional status must be addressed
 – Serum albumin and total lymphocyte count
• Perioperative glucose control
Surgical Considerations

• Tourniquet or no tourniquet?
• Aggressive debridement of infection and necrosis
• Conservative debridement of skin flaps for later use
Surgical Considerations

• Closure
 – Use good judgement
 – Clean and granulating
 – Delayed primary closure
 – Negative pressure wound therapy
 – Skin grafting
 – Alternative products
Great toe

- Amputate as distal as possible
- When possible retain the base of the proximal phalanx
 - Aids in standing balance
 - Preservation of windlass mechanism
MTPJ Disarticulation

- Remove medial and lateral sesamoids
- Remove plantar plate
- May need to resect crista
Lesser Toe Amputations

• Removal of distal phalanx is ideal
• Disarticulation at 2nd MTPJ
 – Creates secondary problem
 – Iatrogenic hallux valgus
 – To avoid this consider a proximal ray resection
Ray Amputation

- Excision of a toe and part of the metatarsal
- Single amputation of 2nd, 3rd, and 4th rays do well
- Avoid removal of two or more central rays
 - Poor functional and cosmetic result
1st Ray Amputation

- Preserve as much length of the metatarsal as possible
 - Preserves the medial longitudinal arch
 - Bevel the plantar aspect
- In some cases it may be prudent to perform a transmetatarsal amp
1st Ray Resections

- Major removal of the metatarsal
 - Affects foot function
 - Causes transfer lesions
 - Outcome related to residual length
Transmetatarsal Amputations

• Consider when two or more medial rays are involved or first ray
• Save as much soft tissue as possible
• Preserve parabola
• Consider Achilles tendon lengthening
• Maintain Lisfranc ligament
TMA Functional Outcome

- 80% achieve satisfactory outcome
- Stiff rocker sole prevents distal ulcers
- Distal shoe filler allows a longer forefoot lever
Tarsometatarsal Amputations

- Results in a major loss of forefoot lever
- Prone to equinus
- Must preserve the vital tendons for best results
 - Peroneus brevis
 - Peroneus longus
 - Tibialis anterior
Lisfranc Amputation

- Inherently disrupts the blood supply
Midtarsal Amputation (Chopart’s)

• Through the talonavicular and calcaneocuboid joints
Chopart’s Amputation

- Equinus contracture is the major drawback
- Must lengthen Achilles tendon
- Must reattach the tibialis anterior tendon
- The patient *may* be able to walk short distances
Partial Foot Amputation Healing

Tc PO2

Healed	Delayed Healing	Failure to Heal
40 | 30 | 20

Tc PO2

PMR Sept 2010: Mayo Clinic
Summary

- Minor amputations have better self-reported quality of life than major amputations.
- Preservation of the metatarsal head maintains near normal kinematics.
- Amputations proximal to Lisfranc joint may not be energy efficient compared to below knee amputation.
Type II DM in adolescents is alarming
Michelangelo’s David
After a 2 year tour in the US
Questions?